Skip to main content

Posts

Showing posts from 2018

Simple code for single image augmentation using Keras

Simple code for single image augmentation using Keras
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

datagen = ImageDataGenerator(
        rotation_range=20,
        width_shift_range=0.5,
        height_shift_range=0.5,
        shear_range=0.4,
        zoom_range=0.4,
        horizontal_flip=True,
        vertical_flip=True,
        fill_mode='nearest')

img = load_img('lb.png')  # this is a PIL image
x = img_to_array(img)  # this is a Numpy array with shape (3, 150, 150)
x = x.reshape((1,) + x.shape)  # this is a Numpy array with shape (1, 3, 150, 150)

# the .flow() command below generates batches of randomly transformed images
# and saves the results to the `preview/` directory
i = 0
for batch in datagen.flow(x, batch_size=1,
                          save_to_dir='preview', save_prefix='cat', save_format='jpeg'):
    i += 1
    if i > 10:
        break  # otherwise the generator would loop indefinitely

Logical Operators - Learn Python

Relational Operators - Learn Python

Python String - Learn Python

Getting started with Jupyter Notebook - Deep learning with python

Python IDLE 3.7.0 - Learn Python